List of topics for final theses in IQMA

- All topics listed below can be edited in German or English language.
- If you are interested in one of the topics, <u>please send us a short CV</u>, your transcript of records and your preferred topic. A grade point average in previous bachelor/master courses better than 2.5 is required. Applications for part-time studies are not possible, only full time studies are practicable.
- Appointments for presentation of specific topics after consultation via e-mail: Every week on Wednesday 1:15 pm. Meeting Point: office E114
- Own topics in the field of thermal, electrical or thin film characterization are also welcome.

Description	Suitable for Master
	of applied Research
Research and, if applicable, building and implementation of alternative methods for electrical characterization of ultrathin films, e.g.:	NO
Conductive atomic force microscopy (C-AFM)	
Wafer-Level-Testing	
Breakthrough behaviour	
Reliability testing	
• others	
Research and, if applicable, building and implementation of alternative methods for thermal characterization of ultrathin films, e.g.:	NO
Raman spectroscopy	
Macroscopic and microscopic 3-Omega method	
Laser flash, time-domain thermoreflectance technique (TDTR)	
• Scanning thermal microscopy (SThM)	
Optical methods	
• others	
Development of Quantitative Scanning Thermal Microscopy (SThM) using microscopic 3-Omega method	YES
• SThM is a method for the qualitative determination of the local thermal conductivity using atomic force microscopy (AFM). A measuring	
probe with a tip radius of a few 10 nm is scanned over a surface and the local thermal conductivity is determined using special evaluation electronics.	
• The SThM methods currently used at the IQMA can currently only provide qualitative results that need to be calibrated in an elaborate way.	
The aim of this work is to supplement the existing measuring equipment with the necessary components (e.g. lock-in amplifiers) in such a	
way that the qualitative thermal conductivities are converted into quantitative values.	
• Methods: SThM measuring station in the atomic force microscope (AFM), AFM evaluation software, if applicable. Programming languages	
Combination of SThM and macroscopic 3-Omega method	
Possibly use of different SThM tips	

Investi	gation and elimination of the topographical influence in scanning thermal microscopy (SThM) using mathematical methods	YES
•	SThM is a method for the qualitative determination of the local thermal conductivity using atomic force microscopy (AFM). A measuring	
	probe with a tip radius of a few 10 nm is scanned over a surface and the local thermal conductivity is determined using special evaluation	
	electronics. The geometry of the tip and sample falsify the thermal images obtained. The aim of this project is to eliminate these errors using	
	mathematical methods (e.g. convolution) and thus to increase the spatial resolution of the SThM measurement method.	
•	Methods: SThM measuring station in the atomic force microscope (AFM), programming languages, AFM evaluation software	
<u>Optimi</u>	zation of atomic force microscopy (AFM) methods for the analysis of the topographic, thermal and electrical properties of thin layers	YES
•	In the Atomic Force Microscope (AFM), a measuring point (radius of a few 10nm) is moved rasterly over the sample surface. A 3D model of	
	surface topography is created by means of an optoelectronic control circuit and with evaluation by appropriate routines.	
•	The aim of this project is to make qualitative statements about the weighting of the different influencing factors of AFM measurements, e.g.:	
	 The influence of the mode (contact, intermittent, non-contact mode) on the quality of the surface resolution. For this purpose, 	
	comparative measurements on laser scanning microscope (LSM) and scanning electron microscope (SEM) are sought.	
	 The influence of different tips (tip radius and spring constant) 	
	 The degradation of different peak types in successive scans 	
	 The influence of the scan frequency 	
	 Testing of advanced modes like e. g. Scalpel AFM for the systematic removal of material, as well as TUNA for the determination of 	
	local electrical conductivity	
•	Methods: Different AFM modes, if applicable. Laser Scanning Microscopy (LSM) and Scanning Electron Microscopy (SEM), Software	
	Nanoscope Analysis and Origin, possibly. Programming languages Labview and Matlab	
<u>Therma</u>	al conductivity measurements of thin films using the 3-omega method	YES
•	The main focus is on the influence of different thicknesses of 3-omega structures on the measurement result. Optionally, the existing	
	measurement setup can also be automated.	
•	familiarisation with the subject of thermal conductivity and the 3-omega method	
•	(Optional: Automation of the existing measurement setup)	
•	Perform some test measurements to become familiar with the measurement setup	
•	Detailed examination of different measuring structures with emphasis on thickness and composition of the measuring structure	
•	Transferring the knowledge gained to different materials	
Constru	uction Measurement technology / Electrical characterization of dielectric materials for future electronic components	YES
•	Working on parameter analyzers of the latest generation B1500A / Keysight	
•	Measurement program design with EasyExpert or LabView	
	https://www.keysight.com/en/pc-1676166/easyexpert-group-device-characterization-software?cc=DE&lc=ger	
•	Optimization of measurement setup (suess wafer probes/micromanipulators)	
•	familiarisation with issues of reliability	
•	Further development of existing measurement methods	
•	Development and execution of tests using a parameter analyzer at a terminal	
•	Research / Adaptation / Further development of degradation models	
•	Lifetime projection based on measurement results/model parameters	
•	Conducting comparative measurements and supplementary characteristics	

Thermal simulations using LTSpice	YES
 Using electrical and thermal analogies (voltage-temperature; electrical resistance-thermal resistance, etc.) 	
Theoretical research about useful and feasible simulation models in our field of research	
Practical implementation of elected simulation cases	
Comparison of results with theoretical calculations or practical measurements	
Possible simulation case: Heat transfer regarding scanning thermal microscopy	
Investigation and optimization of scratching dynamics during scalpel AFM operation	YES
 Standard AFM modes generally allow the analysis of surface or close-surface material properties only 	
 Due to the ongoing miniaturization trend in Semiconductor technology, electronic components are more and more realized in a compact three-dimensional manner 	
 By using appropriate AFM tips with individually optimized scan parameters it is possible, similar to computer tomography, to remove 	
individual material layers of certain thicknesses.	
 The aim of this project is to evaluate different AFM tips regarding their eligibility for Scalpel AFM applications. Furthermore, the influence of the various scan parameters shall be investigated and tuned to remove individually defined thicknesses of various materials. Of special 	
interest is the influence of the thereof induced pressure on material parameters like e.g. the electrical conductivity	